

Supporting Document Mandatory Technical Document

Full Drive Encryption: Authorization Acquisition

September 2015

Version 1.5

CCDB-2015-01-003

Foreword

- 2 This is a supporting document, intended to complement the Common Criteria version 3 and
- 3 the associated Common Evaluation Methodology for Information Technology Security
- 4 Evaluation.

1

- 5 Supporting documents may be "Guidance Documents", that highlight specific approaches
- 6 and application of the standard to areas where no mutual recognition of its application is
- 7 required, and as such, are not of normative nature, or "Mandatory Technical Documents",
- 8 whose application is mandatory for evaluations whose scope is covered by that of the
- 9 supporting document. The usage of the latter class is not only mandatory, but certificates
- issued as a result of their application are recognized under the CCRA.
- 11 This supporting document has been developed by Full Drive Encryption iTC and is designed
- to be used to support the evaluations of products against the cPPs identified in section 1.1.
- 13 **Technical Editor:** FDE iTC
- 14 **Document history:**
- 15 V0.7, September 2014 (Initial Release for Public review)
- 16 V0.11 October 2014 (Incorporated comments from Public review, submitted to CCDB)
- 17 V1.0 January 2015 (Incorporated comments from CCDB review)
- 18 V1.5 September 2015 (Updated to reflect latest revision of cPP)
- 19 **General Purpose:**
- 20 The FDE technology type is special due to its physical scope and its limited external
- 21 interfaces. This leads to some difficulties in evaluating the correctness of the implementation
- of the TOE's provided security functions. In the case of the Authorization Acquisition (AA),
- 23 it may be difficult to trigger the interface to demonstrate the TSF is properly conditioning a
- 24 password, or combining multiple submasks. Therefore methods have to be described on how
- 25 to overcome this challenge (as well as others) in a comparable, transparent and repeatable
- 26 manner in this document.
- 27 Furthermore the main functionality of the AA is to gather user input and provide the
- 28 Encryption Engine with a value that can be used to make the data encryption key available
- 29 for encryption/decryption functions. In order to ensure comparable, transparent and
- 30 repeatable evaluation of the implemented mechanisms, methods have to be described that
- 31 may consist of agreed evaluation approaches, e.g. how to prove that the claimed functionality
- is really done by the TOE.
- **Field of special use:** Full Drive Encryption devices, specifically the set of security functional
- *requirements associated with the Authorization Acquisition component.*
- 35 Acknowledgements:
- 36 This Supporting Document was developed by the Full Drive Encryption international
- 37 Technical Community with representatives from industry, Government agencies, Common
- 38 Criteria Test Laboratories, and members of academia.

September 2015 Version 2.0 Page 2 of 43

Table of Contents

1	INTRODUCTION	6
1.1	Technology Area and Scope of Supporting Document	6
1.2	Structure of the Document	6
1.3	Glossary	7
2	EVALUATION ACTIVITIES FOR SFRS	8
7 1	FCS: Cryptographic Support	
	.1.1 FCS_AFA_EXT.1 Authorization Factor Acquisition	
_	.1.2 FCS_AFA_EXT.2 Timing of Authorization Factor Acquisition	
	.1.3 FCS_CKM.1(a) Cryptographic Key Generation (Asymmetric Keys)	
	.1.4 FCS_CKM.1(b) Cryptographic Key Generation (Symmetric Keys)	
	.1.5 FCS_CKM.4(a) Cryptographic Key Destruction	
	.1.6 FCS_CKM.4(b) Cryptographic Key Destruction	
	.1.7 FCS_CKM_EXT.4(a) Cryptographic Key and Key Material Destruction	
	.1.8 FCS_CKM_EXT.4(b) Cryptographic Key and Key Material Destruction	
_	.1.9 FCS_COP.1(a) Cryptographic Operation (Signature Verification)	
	.1.10 FCS_COP.1(b) Cryptographic Operation (Hash Algorithm)	
	.1.11 FCS_COP.1(c) Cryptographic Operation (Keyed Hash Algorithm)	
	.1.12 FCS_COP.1(d) Cryptographic Operation (Key Wrapping)	
	.1.13 FCS_COP.1(e) Cryptographic Operation (Key Transport)	
	.1.14 FCS_COP.1(f) Cryptographic Operation (AES Data Encryption/Decryption)	
	.1.15 FCS_COP.1(g) Cryptographic Operation (Key Encryption)	
	.1.16 FCS_KDF_EXT.1 Cryptographic Key Derivation	
	.1.17 FCS_KYC_EXT.1 Key Chaining (Initiator)	
	.1.17 FCS_RTC_EAT.1 Rey Channing (Initiator)	
	.1.19 FCS_RBG_EXT.1 Cryptographic Operation (Random Bit Generation)	
	.1.20 FCS_SMC_EXT.1 Cryptographic Operation (Random Bit Generation)	
	.1.20 FCS_SMC_EXT.1 Submask Combining	
2	.1.22 FCS_VAL_EXT.1 Validation	22
2 2	FMT: Security Management	23
	2.1. FMT MOF.1 Management of Functions Behavior	
	.2.2 FMT_SMF.1 Specification of Management Functions	
	•	
2.3	FPT: Protection of the TSF	
2	.3.1 FPT_KYP_EXT.1 Protection of Key and Key Material	25
2	.3.2 FPT_PWR_EXT.1 Power Saving States	25
2	.3.3 FPT_PWR_EXT.2 Timing of Power Saving States	25
2	.3.4 FPT_TST_EXT.1 TSF Testing	25
2	.3.5 FPT_TUD_EXT.1 Trusted Update	26
3	EVALUATION ACTIVITIES FOR SARS	28
3.1	ASE: Security Target Evaluation	28
	.1.1 Conformance Claims (ASE_CCL.1)	
3.2	ADV: Development	28
	.2.1 Basic Functional Specification (ADV_FSP.1)	28
3.3	AGD: Guidance Documents	29

3.3.1	Operational User Guidance (AGD_OPE.1)	30
3.3.2	Preparative Procedures (AGD_PRE.1)	30
3.4 AT	E: Tests	31
3.4.1	Independent Testing – Conformance (ATE_IND.1)	31
3.5 AV	A: Vulnerability Assessment	32
3.5.1	Vulnerability Survey (AVA_VAN.1)	32
4 RE	EQUIRED SUPPLEMENTARY INFORMATION	33
5 RE	FERENCES	34
APPEN	NDIX A VULNERABILITY ANALYSIS	35
APPEN	NDIX B FDE EQUIVALENCY CONSIDERATIONS	36
ΔPPFN	NDIX C: GLOSSARY	41
V DDEV	NDIX D:ACRONYMS	13
		43

List of tables

Table 1 - Evaluation Equivalency Analysis

1 Introduction

1

2

1.1 Technology Area and Scope of Supporting Document

- 3 The purpose of the first set of Collaborative Protection Profiles (cPPs) for Full Drive
- 4 Encryption (FDE): Authorization Acquisition (AA) and Encryption Engine (EE) is to provide
- 5 requirements for Data-at-Rest protection for a lost device. These cPPs allow FDE solutions
- 6 based in software and/or hardware to meet the requirements. The form factor for a storage
- 7 device may vary, but could include: system hard drives/solid state drives in servers,
- 8 workstations, laptops, mobile devices, tablets, and external media. A hardware solution could
- 9 be a Self-Encrypting Drive or other hardware-based solutions; the interface (USB, SATA,
- etc.) used to connect the storage device to the host machine is outside the scope.
- Full Drive Encryption encrypts all data (with certain exceptions) on the storage device and
- 12 permits access to the data only after successful authorization to the FDE solution. The
- exceptions include the necessity to leave a portion of the storage device (the size may vary
- based on implementation) unencrypted for such things as the Master Boot Record (MBR) or
- other AA/EE pre-authentication software. These FDE cPPs interpret the term "full drive
- 16 encryption" to allow FDE solutions to leave a portion of the storage device unencrypted so
- long as it contains no plaintext user or plaintext authorization data.
- 18 The FDE cPP Authorization Acquisition describes the requirements for the Authorization
- 19 Acquisition piece and details the security requirements and evaluation activities necessary to
- interact with a user and result in the availability of a data encryption key (DEK).
- 21 This Supporting Document is mandatory for evaluations of products that claim conformance
- 22 to the following cPP: collaborative Protection Profile for Full Drive Encryption -
- 23 Authorization Acquisition, September 22, 2015.
- 24 Although Evaluation Activities are defined mainly for the evaluators to follow, in general
- 25 they will also help Developers to prepare for evaluation by identifying specific requirements
- 26 for their TOE. The specific requirements in Evaluation Activities may in some cases clarify
- 27 the meaning of SFRs, and may identify particular requirements for the content of Security
- 28 Targets (especially the TOE Summary Specification), user guidance documentation, and
- 29 possibly supplementary information (e.g. for entropy analysis or cryptographic key
- 30 management architecture).

1.2 Structure of the Document

- 32 Evaluation Activities can be defined for both Security Functional Requirements and Security
- 33 Assurance Requirements. These are defined in separate sections of this Supporting
- 34 Document.

31

- 35 If any Evaluation Activity cannot be successfully completed in an evaluation then the overall
- verdict for the evaluation is a 'fail'. In rare cases there may be acceptable reasons why an
- 37 Evaluation Activity may be modified or deemed not applicable for a particular TOE, but this
- must be agreed with the Certification Body for the evaluation.
- 39 In general, if all Evaluation Activities (for both SFRs and SARs) are successfully completed
- in an evaluation then it would be expected that the overall verdict for the evaluation is a 'pass'.

September 2015 Version 2.0 Page 6 of 43

- 1 To reach a 'fail' verdict when the Evaluation Activities have been successfully completed
- 2 would require a specific justification from the evaluator as to why the Evaluation Activities
- 3 were not sufficient for that TOE.
- 4 Similarly, at the more granular level of Assurance Components, if the Evaluation Activities
- 5 for an Assurance Component and all of its related SFR Evaluation Activities are successfully
- 6 completed in an evaluation then it would be expected that the verdict for the Assurance
- 7 Component is a 'pass'. To reach a 'fail' verdict for the Assurance Component when these
- 8 Evaluation Activities have been successfully completed would require a specific justification
- 9 from the evaluator as to why the Evaluation Activities were not sufficient for that TOE.

1.3 Glossary

10

- For definitions of standard CC terminology see [CC] part 1.
- 12 **Supplementary information** information that is not necessarily included in the Security
- 13 Target or operational guidance, and that may not necessarily be public. Examples of such
- 14 information could be entropy analysis, or description of a cryptographic key management
- architecture used in (or in support of) the TOE. The requirement for any such supplementary
- information will be identified in the relevant cPP (see description in section 4).

September 2015 Version 2.0 Page 7 of 43

2 Evaluation Activities for SFRs

2 2.1 FCS: Cryptographic Support

2.1.1 FCS_AFA_EXT.1 Authorization Factor Acquisition

	Evaluation Activity		
TSS	The evaluator shall first examine the TSS to ensure that the authorization factors specified in the ST are described. For password-based factors the examination of the TSS section is performed as part of FCS_PCC_EXT.1 Evaluation Activities. Additionally in this case, the evaluator shall verify that the operational guidance discusses the characteristics of external authorization factors (e.g., how the authorization factor must be generated; format(s) or standards that the authorization factor must meet) that are able to be used by the TOE.		
	If other authorization factors are specified, then for each factor, the TSS specifies how the factors are input into the TOE.		
AGD	The evaluator shall verify that the AGD guidance includes instructions for all of the authorization factors. The AGD will discuss the characteristics of external authorization factors (e.g., how the authorization factor is generated; format(s) or standards that the authorization factor must meet, configuration of the TPM device used) that are able to be used by the TOE.		
KMD	The evaluator shall examine the Key Management Description to confirm that the initial authorization factors (submasks) directly contribute to the unwrapping of the BEV.		
	The evaluator shall verify the KMD describes how a submask is produced from the authorization factor (including any associated standards to which this process might conform), and verification is performed to ensure the length of the submask meets the required size (as specified in this requirement).		
Test	The password authorization factor is tested in FCS_PCC_EXT.1.		
	The evaluator shall also perform the following tests:		
	Test 1 [conditional]: If there is more than one authorization factor, ensure that failure to supply a required authorization factor does not result in access to the decrypted plaintext data.		

4 2.1.2 FCS_AFA_EXT.2 Timing of Authorization Factor Acquisition

Evaluat	Evaluation Activity	
TSS	The evaluator shall examine the TSS for a description of authorization factors and which	
	of the factors are used to gain access to user data after the TOE entered a Compliant power	
	saving state. The TSS is inspected to ensure it describes that each authorization factor	
	satisfies the requirements of FCS_AFA_EXT.1.1.	
AGD	The evaluator shall examine the guidance documentation for a description of authorization	
	factors used to access plaintext data when resuming from a Compliant power saving state.	
KMD	There are no KMD evaluation activities for this SFR.	
Test	The evaluator shall perform the following test:	
	1. Enter the TOE into a Compliant power saving state	
	2. Force the TOE to resume from a Compliant power saving state	
	3. Release an invalid authorization factor and verify that access to decrypted	
	plaintext data is denied	

Evaluation Activity		
	4.	Release a valid authorization factor and verify that access to decrypted plaintext
		data is granted.

2.1.3 FCS_CKM.1(a) Cryptographic Key Generation (Asymmetric Keys)

Evalua	tion Activity
TSS	The evaluator shall ensure that the TSS identifies the key sizes supported by the TOE. If the ST specifies more than one scheme, the evaluator shall examine the TSS to verify that it identifies the usage for each scheme.
AGD	The evaluator shall verify that the AGD guidance instructs the administrator how to configure the TOE to use the selected key generation scheme(s) and key size(s) for all uses specified by the AGD documentation and defined in this cPP.
KMD	If the TOE uses an asymmetric key as part of the key chain, the KMD should detail how the asymmetric key is used as part of the key chain.
Test	The following tests require the developer to provide access to a test platform that provides the evaluator with tools that are typically not found on factory products.
	Key Generation for FIPS PUB 186-4 RSA Schemes The evaluator shall verify the implementation of RSA Key Generation by the TOE using the Key Generation test. This test verifies the ability of the TSF to correctly produce values for the key components including the public verification exponent e, the private prime factors p and q, the public modulus n and the calculation of the private signature exponent d. Key Pair generation specifies 5 ways (or methods) to generate the primes p and q. These include:
	 Random Primes: Provable primes Probable primes Primes with Conditions: Primes p1, p2, q1,q2, p and q shall all be provable primes Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be probable primes Primes p1, p2, q1,q2, p and q shall all be probable primes
	To test the key generation method for the Random Provable primes method and for all the Primes with Conditions methods, the evaluator must seed the TSF key generation routine with sufficient data to deterministically generate the RSA key pair. This includes the random seed(s), the public exponent of the RSA key, and the desired key length. For each key length supported, the evaluator shall have the TSF generate 25 key pairs. The evaluator shall verify the correctness of the TSF's implementation by comparing values generated by the TSF with those generated from a known good implementation.
	Key Generation for Elliptic Curve Cryptography (ECC) FIPS 186-4 ECC Key Generation Test For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall require the implementation under test (IUT) to generate 10 private/public key pairs. The private key shall be generated using an approved random bit generated (RBG). To determine correctness, the evaluator shall submit the generated key pairs to the public key verification (PKV) function of a known good implementation.

FIPS 186-4 Public Key Verification (PKV) Test

Evaluation Activity

For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall generate 10 private/public key pairs using the key generation function of a known good implementation and modify five of the public key values so that they are incorrect, leaving five values unchanged (i.e., correct). The evaluator shall obtain in response a set of 10 PASS/FAIL values.

Key Generation for Finite-Field Cryptography (FFC)

The evaluator shall verify the implementation of the Parameters Generation and the Key Generation for FFC by the TOE using the Parameter Generation and Key Generation test. This test verifies the ability of the TSF to correctly produce values for the field prime p, the cryptographic prime q (dividing p-1), the cryptographic group generator g, and the calculation of the private key x and public key y.

The Parameter generation specifies 2 ways (or methods) to generate the cryptographic prime q and the field prime p:

Cryptographic and Field Primes:

- Primes q and p shall both be provable primes
- Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

Cryptographic Group Generator:

- Generator g constructed through a verifiable process
- Generator g constructed through an unverifiable process.

The Key generation specifies 2 ways to generate the private key x:

Private Key:

- len(q) bit output of RBG where $1 \le x \le q-1$
- len(q) + 64 bit output of RBG, followed by a mod q-1 operation where $1 \le x \le q-1$.

The security strength of the RBG must be at least that of the security offered by the FFC parameter set.

To test the cryptographic and field prime generation method for the provable primes method and/or the group generator g for a verifiable process, the evaluator must seed the TSF parameter generation routine with sufficient data to deterministically generate the parameter set.

For each key length supported, the evaluator shall have the TSF generate 25 parameter sets and key pairs. The evaluator shall verify the correctness of the TSF's implementation by comparing values generated by the TSF with those generated from a known good implementation. Verification must also confirm

- g != 0.1
- q divides p-1
- $g^q \mod p = 1$
- $g^x \mod p = y$

for each FFC parameter set and key pair.

2.1.4 FCS_CKM.1(b) Cryptographic Key Generation (Symmetric Keys)

Evaluation Activity		
TSS	The evaluator shall review the TSS to determine that a symmetric key is supported by the	
	product, that the TSS includes a description of the protection provided by the product for	
	this key. The evaluator shall ensure that the TSS identifies the key sizes supported by the	
	TOE.	
AGD	The evaluator shall verify that the AGD guidance instructs the administrator how to	
	configure the TOE to use the selected key size(s) for all uses specified by the AGD	
	documentation and defined in this cPP.	

Evaluation Activity		
KMD	If the TOE uses a symmetric key as part of the key chain, the KMD should detail how the	
	symmetric key is used as part of the key chain.	
Test	There are no test evaluation activities for this SFR.	

1

2 2.1.5 FCS_CKM.4(a) Cryptographic Key Destruction

Evalua	tion Activity
TSS	The evaluator shall verify the TSS provides a high level description of how keys and key material are destroyed.
AGD	There are no AGD evaluation activities for this SFR.
KMD	The evaluator shall check to ensure the KMD lists each type of key material, its origin, possible temporary locations (e.g. key register, cache memory, stack, FIFO), and storage location.
	The evaluator shall verify that the KMD describes when each type of key material (software-based key storage, BEVs, passwords, etc.) is cleared (for example, on system power off, on wipe function, on disconnection of trusted channels, when no longer needed by the trusted channel per the protocol, etc.).
	The evaluator shall also verify that, for each type of key and storage, the type of clearing procedure that is performed (cryptographic erase, overwrite with zeros, overwrite with random pattern, or block erase) is listed. If different types of memory are used to store the materials to be protected, the evaluator shall check to ensure that the TSS describes the clearing procedure in terms of the memory in which the data are stored (for example, "secret keys stored on flash are cleared by overwriting once with zeros, while secret keys stored on the internal persistent storage device are cleared by overwriting three times with a random pattern that is changed before each write").
	The evaluator shall check to ensure the KMD lists each type of key material (software-based key storage, BEVs, passwords, etc.) and its origin, storage location, and the method for destruction for each key.
Test	For each software and firmware key clearing situation the evaluator shall repeat the following tests for Volatile Memory. For the test below, "key" refers to keys and key material.
	Test 1: The evaluator shall utilize appropriate combinations of specialized operational environment (e.g. a Virtual Machine) and development tools (debuggers, simulators, etc.) to test that keys are cleared correctly, including all copies of the key that may have been created internally by the TOE during normal cryptographic processing with that key.
	For each key subject to clearing, including intermediate copies of keys that are persisted encrypted by the TOE the evaluator shall: 1. Attach to the TOE software/firmware with a debugger. 2. Record the value of the key in the TOE subject to clearing. 3. Cause the TOE to perform a normal cryptographic processing with the key from #1.
	 4. Cause the TOE to clear the key. 5. Cause the TOE to stop the execution but not exit. 6. Cause the TOE to dump the entire memory footprint of the TOE into a binary file.

Evali	Evaluation Activity		
	7. Search the content of the binary file created in #6 for instances of the		
	known key value from #2.		
	The test succeeds if no copies of the key from #2 are found in step #7 above and fails otherwise.		
	The evaluator shall perform this test on all keys, including those persisted in encrypted form, to ensure intermediate copies are cleared.		

1 2.1.6 FCS_CKM.4(b) Cryptographic Key Destruction

Evaluat	tion Activity	
TSS	The evaluator shall verify the TSS provides a high level description of how keys stored in	
	volatile memory are destroyed. The valuator to verify that TSS outlines:	
	- if and when the TSF or the Operational Environment is used to destroy keys from	
	volatile memory;	
	- if and how memory locations for (temporary) keys are tracked;	
	- details of the interface used for key erasure when relying on the OE for memory	
	clearing.	
AGD	The evaluator shall check the guidance documentation if the TOE depends on the	
	Operational Environment for memory clearing and how that is achieved.	
KMD	The evaluator shall check to ensure the KMD lists each type of key, its origin, possible	
	memory locations in volatile memory.	
Test	The test activities performed for this SFR are identical to those performed for	
	FCS_CKM.4(a).	

2.1.7 FCS_CKM_EXT.4(a) Cryptographic Key and Key Material Destruction

3

4 5

Evaluat	Evaluation Activity	
TSS	The evaluator shall verify the TSS provides a high level description of what it means for	
	keys and key material to be no longer needed and when then should be expected to be	
	destroyed.	
AGD	There are no AGD evaluation activities for this SFR.	
KMD	The evaluator shall verify the KMD includes a description of the areas where keys and	
	key material reside and when the keys and key material are no longer needed.	
	The evaluator shall verify the KMD includes a key lifecycle, that includes a description	
	where key material reside, how the key material is used, how it is determined that keys	
	and key material are no longer needed, and how the material is destroyed once it is not	
	needed and that the documentation in the KMD follows FCS_CKM.4(1) for the	
	destruction.	
Test	There are no test evaluation activities for this SFR.	

2.1.8 FCS_CKM_EXT.4(b) Cryptographic Key and Key Material Destruction

Evalua	Evaluation Activity	
TSS	The evaluator shall verify the TSS provides a description of what keys and key material	
	are destroyed when entering any Compliant power saving state.	
AGD	The evaluator shall validate that guidance documentation contains clear warnings and	
	information on conditions in which the TOE may end up in a non-Compliant power saving	
	state indistinguishable from a Compliant power saving state. In that case it must contain	
	mitigation instructions on what to do in such scenarios.	

September 2015 Version 2.0 Page 12 of 43

Evalua	Evaluation Activity	
KMD	The evaluator shall verify the KMD includes a description of the areas where keys and	
	key material reside.	
	The evaluator shall verify the KMD includes a key lifecycle that includes a description where key material reside, how the key material is used, and how the material is destroyed once it is not needed and that the documentation in the KMD follows FCS_CKM.4(b) for the destruction.	
Test	There are no test evaluation activities for this SFR.	

2.1.9 FCS_COP.1(a) Cryptographic Operation (Signature Verification)

- This requirement is used to verify digital signatures attached to updates from the TOE manufacturer before installing those updates on the TOE. Because this component is to be
- 4 used in the update function, additional Evaluation Activities to those listed below are covered
- 5 in other evaluation activities sections in this document. The following activities deal only
- 6 with the implementation for the digital signature algorithm; the evaluator performs the testing
- 7 appropriate for the algorithm(s) selected in the component.
- 8 Hash functions and/or random number generation required by these algorithms must be
- 9 specified in the ST; therefore the Evaluation Activities associated with those functions are
- 10 contained in the associated Cryptographic Hashing and Random Bit Generation sections.
- Additionally, the only function required by the TOE is the verification of digital signatures.
- 12 If the TOE generates digital signatures to support the implementation of any functionality
- required by this cPP, then the applicable evaluation and validation scheme must be consulted
- 14 to determine the required evaluation activities.

1

Evalua	Evaluation Activity	
TSS	The evaluator shall check the TSS to ensure that it describes the overall flow of the signature verification. This should at least include identification of the format and general location (e.g., "firmware on the hard drive device" vice "memory location 0x00007A4B") of the data to be used in verifying the digital signature; how the data received from the operational environment are brought on to the device; and any processing that is performed that is not part of the digital signature algorithm (for instance, checking of certificate revocation lists).	
AGD	There are no AGD evaluation activities for this SFR.	
KMD	There are no KMD evaluation activities for this SFR.	
Test	Each section below contains the tests the evaluators must perform for each type of digital signature scheme. Based on the assignments and selections in the requirement, the evaluators choose the specific activities that correspond to those selections. It should be noted that for the schemes given below, there are no key generation/domain parameter generation testing requirements. This is because it is not anticipated that this functionality would be needed in the end device, since the functionality is limited to checking digital signatures in delivered updates. This means that the domain parameters should have already been generated and encapsulated in the hard drive firmware or onboard non-volatile storage. If key generation/domain parameter generation is required, the evaluation and validation scheme must be consulted to ensure the correct specification of the required evaluation activities and any additional components. The following tests are conditional based upon the selections made within the SFR.	
	The following tests may require the developer to provide access to a test platform that provides the evaluator with tools that are typically not found on factory products.	

Evaluation Activity

ECDSA Algorithm Tests

ECDSA FIPS 186-4 Signature Verification Test

For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair, the evaluator shall generate a set of 10 1024-bit message, public key and signature tuples and modify one of the values (message, public key or signature) in five of the 10 tuples. The evaluator shall obtain in response a set of 10 PASS/FAIL values.

RSA Signature Algorithm Tests

Signature Verification Test

The evaluator shall perform the Signature Verification test to verify the ability of the TOE to recognize another party's authentic and unauthentic signatures. The evaluator shall inject errors into the test vectors produced during the Signature Verification Test by introducing errors in some of the public keys e, messages, IR format, and/or signatures. The TOE attempts to verify the signatures and returns success or failure.

The evaluator shall use these test vectors to emulate the signature verification test using the corresponding parameters and verify that the TOE detects these errors.

1 2.1.10 FCS_COP.1(b) Cryptographic Operation (Hash Algorithm)

Evalua	Evaluation Activity	
TSS	The evaluator shall check that the association of the hash function with other TSF	
	cryptographic functions (for example, the digital signature verification function) is	
	documented in the TSS.	
AGD	The evaluator checks the operational guidance documents to determine that any system	
	configuration necessary to enable required hash size functionality is provided.	
KMD	There are no KMD evaluation activities for this SFR.	
Test	The TSF hashing functions can be implemented in one of two modes. The first mode is the byte-oriented mode. In this mode the TSF only hashes messages that are an integral number of bytes in length; i.e., the length (in bits) of the message to be hashed is divisible by 8. The second mode is the bit-oriented mode. In this mode the TSF hashes messages of arbitrary length. As there are different tests for each mode, an indication is given in the following sections for the bit-oriented vs. the byte-oriented test mode.	
	The evaluator shall perform all of the following tests for each hash algorithm implemented by the TSF and used to satisfy the requirements of this cPP.	
	Short Messages Test - Bit-oriented Mode The evaluators devise an input set consisting of m+1 messages, where m is the block length of the hash algorithm. The length of the messages range sequentially from 0 to m bits. The message text shall be pseudorandomly generated. The evaluators compute the message digest for each of the messages and ensure that the correct result is produced when the messages are provided to the TSF.	
	Short Messages Test - Byte-oriented Mode The evaluators devise an input set consisting of m/8+1 messages, where m is the block length of the hash algorithm. The length of the messages range sequentially from 0 to m/8 bytes, with each message being an integral number of bytes. The message text shall be pseudorandomly generated. The evaluators compute the message digest for each of the	

Evaluation Activity

messages and ensure that the correct result is produced when the messages are provided to the TSF.

Selected Long Messages Test - Bit-oriented Mode

The evaluators devise an input set consisting of m messages, where m is the block length of the hash algorithm. For SHA-256, the length of the i-th message is 512 + 8*99*i, where $1 \le i \le m/8$. For SHA-512, the length of the i-th message is 1024 + 8*99*i, where $1 \le i \le m/8$. The message text shall be pseudorandomly generated. The evaluators compute the message digest for each of the messages and ensure that the correct result is produced when the messages are provided to the TSF.

Selected Long Messages Test - Byte-oriented Mode

The evaluators devise an input set consisting of m/8 messages, where m is the block length of the hash algorithm. For SHA-256, the length of the i-th message is 512 + 99*i, where $1 \le i \le m$. For SHA-512, the length of the i-th message is 1024 + 99*i, where $1 \le i \le m$. The message text shall be pseudorandomly generated. The evaluators compute the message digest for each of the messages and ensure that the correct result is produced when the messages are provided to the TSF.

Pseudorandomly Generated Messages Test

1. This test is for byte-oriented implementations only. The evaluators randomly generate a seed that is n bits long, where n is the length of the message digest produced by the hash function to be tested. The evaluators then formulate a set of 100 messages and associated digests by following the algorithm provided in Figure 1 of [SHAVS]. The evaluators then ensure that the correct result is produced when the messages are provided to the TSF.

1 2.1.11 FCS_COP.1(c) Cryptographic Operation (Keyed Hash Algorithm)

Evaluat	Evaluation Activity	
TSS	The evaluator shall examine the TSS to ensure that it specifies the following values used	
	by the HMAC function: key length, hash function used, block size, and output MAC	
	length used.	
AGD	There are no AGD evaluation activities for this SFR.	
KMD	There are no KMD evaluation activities for this SFR.	
Test	For each of the supported parameter sets, the evaluator shall compose 15 sets of test	
	data. Each set shall consist of a key and message data. The evaluator shall have the TSF	
	generate HMAC tags for these sets of test data. The resulting MAC tags shall be	
	compared to the result of generating HMAC tags with the same key using a known good	
	implementation.	

2 2.1.12 FCS_COP.1(d) Cryptographic Operation (Key Wrapping)

Evaluat	Evaluation Activity	
TSS	The evaluator shall verify the TSS includes a description of the key wrap function(s) and	
	shall verify the key wrap uses an approved key wrap algorithm according to the	
	appropriate specification.	
AGD	There are no AGD evaluation activities for this SFR.	
KMD	The evaluator shall review the KMD to ensure that all keys are wrapped using the	
	approved method and a description of when the key wrapping occurs.	
Test	There are no test evaluation activities for this SFR.	

2.1.13 FCS_COP.1(e) Cryptographic Operation (Key Transport)

2 This Evaluation Activity will be provided shortly

Evaluation Activity		
TSS		
AGD		
KMD		
Test		

3

4

5

2.1.14 FCS_COP.1(f) Cryptographic Operation (AES Data Encryption/Decryption)

Evalua	tion Activity
TSS	The evaluator shall verify the TSS includes a description of the key size used for
100	encryption and the mode used for encryption.
AGD	If multiple encryption modes are supported, the evaluator examines the guidance
AGD	documentation to determine that the method of choosing a specific mode/key size by the
	end user is described.
KMD	There are no KMD evaluation activities for this SFR.
Test	The following tests are conditional based upon the selections made in the SFR.
Test	The following tests are conditional based upon the selections made in the SFR.
	AES CDC Toots
	AES-CBC Tests
	AES-CBC Known Answer Tests
	There are four Known Answer Tests (KATs), described below. In all KATs, the plaintext,
	ciphertext, and IV values shall be 128-bit blocks. The results from each test may either be
	obtained by the evaluator directly or by supplying the inputs to the implementer and
	receiving the results in response. To determine correctness, the evaluator shall compare
	the resulting values to those obtained by submitting the same inputs to a known good
	implementation.
	KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply
	a set of 10 plaintext values and obtain the ciphertext value that results from AES-
	CBC encryption of the given plaintext using a key value of all zeros and an IV of
	all zeros. Five plaintext values shall be encrypted with a 128-bit all-zeros key, and
	the other five shall be encrypted with a 256-bit all-zeros key.
	and other five shall be energipted with a 250 ore all 2010s key.
	To test the decrypt functionality of AES-CBC, the evaluator shall perform the
	same test as for encrypt, using 10 ciphertext values as input and AES-CBC
	decryption.
	KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply
	a set of 10 key values and obtain the ciphertext value that results from AES-CBC
	encryption of an all-zeros plaintext using the given key value and an IV of all
	zeros. Five of the keys shall be 128-bit keys, and the other five shall be 256-bit
	keys.
	To test the decrypt functionality of AES-CBC, the evaluator shall perform the
	same test as for encrypt, using an all-zero ciphertext value as input and AES-CBC
	decryption.

Evaluation Activity

KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply the two sets of key values described below and obtain the ciphertext value that results from AES encryption of an all-zeros plaintext using the given key value and an IV of all zeros. The first set of keys shall have 128 128-bit keys, and the second set shall have 256 256-bit keys. Key i in each set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N].

To test the decrypt functionality of AES-CBC, the evaluator shall supply the two sets of key and ciphertext value pairs described below and obtain the plaintext value that results from AES-CBC decryption of the given ciphertext using the given key and an IV of all zeros. The first set of key/ciphertext pairs shall have 128 128-bit key/ciphertext pairs, and the second set of key/ciphertext pairs shall have 256 256-bit key/ciphertext pairs. Key i in each set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. The ciphertext value in each pair shall be the value that results in an all-zeros plaintext when decrypted with its corresponding key.

KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply the set of 128 plaintext values described below and obtain the two ciphertext values that result from AES-CBC encryption of the given plaintext using a 128-bit key value of all zeros with an IV of all zeros and using a 256-bit key value of all zeros with an IV of all zeros, respectively. Plaintext value i in each set shall have the leftmost i bits be ones and the rightmost 128-i bits be zeros, for i in [1,128].

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using ciphertext values of the same form as the plaintext in the encrypt test as input and AES-CBC decryption.

AES-CBC Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting an i-block message where 1 < i < = 10. The evaluator shall choose a key, an IV and plaintext message of length i blocks and encrypt the message, using the mode to be tested, with the chosen key and IV. The ciphertext shall be compared to the result of encrypting the same plaintext message with the same key and IV using a known good implementation.

The evaluator shall also test the decrypt functionality for each mode by decrypting an i-block message where 1 < i <= 10. The evaluator shall choose a key, an IV and a ciphertext message of length i blocks and decrypt the message, using the mode to be tested, with the chosen key and IV. The plaintext shall be compared to the result of decrypting the same ciphertext message with the same key and IV using a known good implementation.

AES-CBC Monte Carlo Tests

The evaluator shall test the encrypt functionality using a set of 200 plaintext, IV, and key 3-tuples. 100 of these shall use 128 bit keys, and 100 shall use 256 bit keys. The plaintext and IV values shall be 128-bit blocks. For each 3-tuple, 1000 iterations shall be run as follows:

Evaluation Activity

The ciphertext computed in the 1000th iteration (i.e., CT[1000]) is the result for that trial. This result shall be compared to the result of running 1000 iterations with the same values using a known good implementation.

The evaluator shall test the decrypt functionality using the same test as for encrypt, exchanging CT and PT and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

AES-GCM Test

The evaluator shall test the authenticated encrypt functionality of AES-GCM for each combination of the following input parameter lengths:

128 bit and 256 bit keys

Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple of 128 bits, if supported. The other plaintext length shall not be an integer multiple of 128 bits, if supported.

Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall be a non-zero integer multiple of 128 bits, if supported. One AAD length shall not be an integer multiple of 128 bits, if supported.

Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths tested.

The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD, and IV tuples for each combination of parameter lengths above and obtain the ciphertext value and tag that results from AES-GCM authenticated encrypt. Each supported tag length shall be tested at least once per set of 10. The IV value may be supplied by the evaluator or the implementation being tested, as long as it is known.

The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag, AAD, and IV 5-tuples for each combination of parameter lengths above and obtain a Pass/Fail result on authentication and the decrypted plaintext if Pass. The set shall include five tuples that Pass and five that Fail.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the implementer and receiving the results in response. To determine correctness, the evaluator shall compare the resulting values to those obtained by submitting the same inputs to a known good implementation.

XTS-AES Test

The evaluator shall test the encrypt functionality of XTS-AES for each combination of the following input parameter lengths:

256 bit (for AES-128) and 512 bit (for AES-256) keys

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a non-zero integer multiple of 128 bits, if supported. One of the data unit lengths shall be an integer multiple of 128 bits, if supported. The third data unit length shall be either the longest supported data unit length or 2¹⁶ bits, whichever is smaller.

using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain the ciphertext that results from XTS-AES encrypt.

September 2015 Version 2.0 Page 18 of 43

Evalua	Evaluation Activity	
	The evaluator may supply a data unit sequence number instead of the tweak value if the implementation supports it. The data unit sequence number is a base-10 number ranging between 0 and 255 that implementations convert to a tweak value internally. The evaluator shall test the decrypt functionality of XTS-AES using the same test as for encrypt, replacing plaintext values with ciphertext values and XTS-AES encrypt with XTS-AES decrypt.	

2.1.15 FCS_COP.1(g) Cryptographic Operation (Key Encryption)

Evalua	Evaluation Activity	
TSS	The evaluator shall verify the TSS includes a description of the key size used for	
	encryption and the mode used for the key encryption.	
AGD	If multiple key encryption modes are supported, the evaluator examines the guidance	
	documentation to determine that the method of choosing a specific mode/key size by the	
	end user is described.	
KMD	The evaluator shall examine the vendor's KMD to verify that it includes a description of	
	how key encryption will be used as part of the key chain.	
Test	The AES test should be followed in FCS_COP.1(f) Cryptographic Operation (AES Data	
	Encryption/Decryption)	

2

3 2.1.16 FCS_KDF_EXT.1 Cryptographic Key Derivation

Evalua	Evaluation Activity	
TSS	The evaluator shall verify the TSS includes a description of the key derivation function	
	and shall verify the key derivation uses an approved derivation mode and key expansion	
	algorithm according to SP 800-108 and SP 800-132.	
AGD	There are no AGD evaluation activities for this SFR.	
KMD	The evaluator shall examine the vendor's KMD to ensure that all keys used are derived	
	using an approved method and a description of how and when the keys are derived.	
Test	There are no test evaluation activities for this SFR.	

4 2.1.17 FCS_KYC_EXT.1 Key Chaining (Initiator)

Evalua	Evaluation Activity	
TSS	The evaluator shall verify the TSS contains a high-level description of the BEV sizes –	
	that it supports BEV outputs of no fewer 128 bits for products that support only AES-128,	
	and no fewer than 256 bits for products that support AES-256.	
AGD	There are no AGD evaluation activities for this SFR.	
KMD	The evaluator shall examine the KMD describes a high level description of the key	
	hierarchy for all authorizations methods selected in FCS_AFA_EXT.1 that are used to	
	protect the BEV. The evaluator shall examine the KMD to ensure it describes the key	
	chain in detail. The description of the key chain shall be reviewed to ensure it maintains a	
	chain of keys using key wrap or key derivation methods that meet FCS_COP.1(d) and	
	FCS_KDF_EXT.1.	
	The evaluator shall examine the KMD to ensure that it describes how the key chain process	
	functions, such that it does not expose any material that might compromise any key in the	
	chain. (e.g. using a key directly as a compare value against a TPM) This description must	
	include a diagram illustrating the key hierarchy implemented and detail where all keys and	
	keying material is stored or what it is derived from. The evaluator shall examine the key	
	hierarchy to ensure that at no point the chain could be broken without a cryptographic	

Evaluation Activity	
	exhaust or the initial authorization value and the effective strength of the BEV is
	maintained throughout the key chain.
	The evaluator shall verify the KMD includes a description of the strength of keys throughout the key chain.
Test	There are no test evaluation activities for this SFR.

2.1.18 FCS_PCC_EXT.1 Cryptographic Password Construct and Conditioning

1

2

3

Evalua	valuation Activity	
TSS	The evaluator shall ensure the TSS describes the manner in which the TOE enforces the	
	construction of passwords, including the length, and requirements on characters (number	
	and type). The evaluator also verifies that the TSS provides a description of how the	
	password is conditioned and the evaluator ensures it satisfies the requirement.	
ACID		
AGD	There are no AGD evaluation activities for this SFR.	
KMD	The evaluator shall examine the KMD to ensure that the formation of the BEV and	
	intermediary keys is described and that the key sizes match that selected by the ST author.	
	The evaluator shall check that the KMD describes the method by which the	
	password/passphrase is first encoded and then fed to the SHA algorithm. The settings for	
	the algorithm (padding, blocking, etc.) shall be described, and the evaluator shall verify	
	that these are supported by the selections in this component as well as the selections	
	^ ^	
	concerning the hash function itself. The evaluator shall verify that the KMD contains a	
	description of how the output of the hash function is used to form the submask that will	
	be input into the function and is the same length as the BEV as specified above.	
Test	The evaluator shall also perform the following tests:	
	1. Test 1: Ensure that the TOE supports passwords/passphrases of a minimum	
	length of 64 characters.	
	2. Test 2: If the TOE supports a password/passphrase length up to a maximum	
	number of characters, n (which would be greater than 64), then ensure that the	
	TOE will not accept more than n characters.	
	3. Test 3: Ensure that the TOE supports passwords consisting of all characters	
	assigned and supported by the ST author.	

2.1.19 FCS_RBG_EXT.1 Cryptographic Operation (Random Bit Generation)

Evaluat	Evaluation Activity	
TSS	For any RBG services provided by a third party, the evaluator shall ensure the TSS	
	includes a statement about the expected amount of entropy received from such a source,	
	and a full description of the processing of the output of the third-party source. The	
	evaluator shall verify that this statement is consistent with the selection made in	
	FCS_RBG_EXT.1.2 for the seeding of the DRBG. If the ST specifies more than one	
	DRBG, the evaluator shall examine the TSS to verify that it identifies the usage of each	
	DRBG mechanism.	
AGD	The evaluator shall verify that the AGD guidance instructs the administrator how to	
	configure the TOE to use the selected DRBG mechanism(s), if necessary, and provides	
	information regarding how to instantiate/call the DRBG for RBG services needed in this	
	cPP.	
KMD	There are no KMD evaluation activities for this SFR.	
Test	The evaluator shall perform 15 trials for the RNG implementation. If the RNG is	
	configurable by the TOE, the evaluator shall perform 15 trials for each configuration. The	

September 2015 Version 2.0 Page 20 of 43

Evaluation Activity

evaluator shall verify that the instructions in the operational guidance for configuration of the RNG are valid.

If the RNG has prediction resistance enabled, each trial consists of (1) instantiate DRBG, (2) generate the first block of random bits (3) generate a second block of random bits (4) uninstantiate. The evaluator verifies that the second block of random bits is the expected value. The evaluator shall generate eight input values for each trial. The first is a count (0 – 14). The next three are entropy input, nonce, and personalization string for the instantiate operation. The next two are additional input and entropy input for the first call to generate. The final two are additional input and entropy input for the second call to generate. These values are randomly generated. "generate one block of random bits" means to generate random bits with number of returned bits equal to the Output Block Length (as defined in NIST SP800-90A).

If the RNG does not have prediction resistance, each trial consists of (1) instantiate DRBG, (2) generate the first block of random bits (3) reseed, (4) generate a second block of random bits (5) uninstantiate. The evaluator verifies that the second block of random bits is the expected value. The evaluator shall generate eight input values for each trial. The first is a count (0-14). The next three are entropy input, nonce, and personalization string for the instantiate operation. The fifth value is additional input to the first call to generate. The sixth and seventh are additional input and entropy input to the call to reseed. The final value is additional input to the second generate call.

The following paragraphs contain more information on some of the input values to be generated/selected by the evaluator.

Entropy input: the length of the entropy input value must equal the seed length. **Nonce:** If a nonce is supported (CTR_DRBG with no Derivation Function does not use a nonce), the nonce bit length is one-half the seed length.

Personalization string: The length of the personalization string must be <= seed length. If the implementation only supports one personalization string length, then the same length can be used for both values. If more than one string length is support, the evaluator shall use personalization strings of two different lengths. If the implementation does not use a personalization string, no value needs to be supplied.

Additional input: the additional input bit lengths have the same defaults and restrictions as the personalization string lengths.

1 2.1.20 FCS_SMC_EXT.1 Submask Combining

Evaluat	Evaluation Activity	
TSS	If the submasks produced from the authorization factors are XORed together to form the	
	BEV or intermediate key, the TSS section shall identify how this is performed (e.g., if	
	there are ordering requirements, checks performed, etc.). The evaluator shall also confirm	
	that the TSS describes how the length of the output produced is at least the same as that	
	of the BEV.	
AGD	There are no AGD evaluation activities for this SFR.	
KMD	The evaluator shall review the KMD to ensure that an approved combination is used and	
	does not result in the weakening or exposure of key material.	
Test	The evaluator shall perform the following test:	
	Test 1 [conditional]: If there is more than one authorization factor, ensure that failure to supply a required authorization factor does not result in access to the encrypted data.	

2.1.21 FCS_SNI_EXT.1 Cryptographic Operation (Salt, Nonce, and Initialization Vector Generation)

Evalua	Evaluation Activity	
TSS	The evaluator shall ensure the TSS describes how salts are generated. The evaluator shall confirm that the salt is generating using an RBG described in FCS_RBG_EXT.1 or by the Operational Environment. If external function is used for this purpose, the TSS should include the specific API that is called with inputs.	
	The evaluator shall ensure the TSS describes how nonces are created uniquely and how IVs and tweaks are handled (based on the AES mode). The evaluator shall confirm that	
	the nonces are unique and the IVs and tweaks meet the stated requirements.	
AGD	There are no AGD evaluation activities for this SFR.	
KMD	There are no KMD evaluation activities for this SFR.	
Test	There are no test evaluation activities for this SFR.	

3 2.1.22 FCS_VAL_EXT.1 Validation

1 2

Evalua	Evaluation Activity	
TSS	The evaluator shall examine the TSS to determine which authorization factors support validation.	
	The evaluator shall examine the TSS to review a high-level description if multiple submasks are used within the TOE, how the submasks are validated (e.g., each submask validated before combining, once combined validation takes place).	
AGD	[conditional] If this functionality is configurable, the evaluator shall examine the operational guidance to ensure it describes how to configure the TOE to ensure the limits regarding validation attempts can be established.	
KMD	The evaluator shall examine the KMD to verify that it describes the methods the TOE employs to limit the number of consecutively failed authorization attempts.	
	The evaluator shall examine the vendor's KMD to ensure it describes how validation is performed. The description of the validation process in the KMD provides detailed information how the TOE validates the submasks. The KMD describes how the process works, such that it does not expose any material that might compromise the submask(s).	
Test	The evaluator shall perform the following tests:	
	Test 1: The evaluator shall determine the limit on the average rate of the number of consecutive failed authorization attempts. The evaluator will test the TOE by entering that number of incorrect authorization factors in consecutive attempts to access the protected data. If the limit mechanism includes any "lockout" period, the time period tested should include at least one such period. Then the evaluator will verify that the TOE behaves as described in the TSS.	
	Test 2: For each validated authorization factor, ensure that when the user provides an incorrect authorization factor, the TOE prevents the BEV from being forwarded outside the TOE (e.g., to the EE).	

September 2015 Version 2.0 Page 22 of 43

1 2.2 FMT: Security Management

3

2.2.1 FMT_MOF.1 Management of Functions Behavior

Evaluation Activity	
If support for Compliant power saving state(s) are claimed in the ST, the evaluator shall	
ensure the TSS describes how these are managed and shall ensure that TSS describes how	
only privileged users (administrators) are allowed to manage the states.	
The evaluator to check if guidance documentation describes which authorization factors	
are required to change Compliant power saving state behavior and properties.	
There are no KMD evaluation activities for this SFR.	
The evaluator shall perform the following tests:	
Test 1: The evaluator presents a privileged authorization credential to the TSF and validates that changes to Compliant power saving state behavior and properties are allowed. Test 2: The evaluator presents a non-privileged authorization credential to the TSF and validates that changes to Compliant power saving state behavior are not allowed.	

2.2.2 FMT_SMF.1 Specification of Management Functions

Evalua	tion Activity
TSS	Option A: The evaluator shall ensure the TSS describes how the TOE sends the request to the EE to change the DEK.
	Option B: The evaluator shall ensure the TSS describes how the TOE sends the request to the EE to cryptographically erase the DEK.
	Option C: The evaluator shall ensure the TSS describes the methods by which users may change the set of all authorization factor values supported.
	Option D: The evaluator shall ensure the TSS describes the process to initiate TOE firmware/software updates.
	Option E: If power saving states can be managed, the evaluator shall ensure that the TSS describes how this is performed, including how the TOE supports disabling certain power saving states if more than one are supported. If additional management functions are claimed in the ST, the evaluator shall ensure the TSS describes the additional functions.
AGD	Option A + B: The evaluator shall examine the operational guidance to ensure that it describes how the functions for A and B can be initiated by the user.
	Option C: The evaluator shall examine the operational guidance to ensure that it describes how selected authorization factor values are changed.
	Option D: The evaluator shall examine the operational guidance to ensure that it describes how to initiate TOE firmware/software updates.
	Option E: Default Authorization Factors: It may be the case that the TOE arrives with default authorization factors in place. If it does, then the selection in section E must be made so that there is a mechanism to change these authorization factors. The operational guidance shall describe the method by which the user changes these factors when they are

September 2015 Version 2.0 Page 23 of 43

Evaluation Activity

taking ownership of the device. The TSS shall describe the default authorization factors that exist.

Disable Key Recovery: The guidance for disabling this capability shall be described in the AGD documentation.

Power Saving: The guidance shall describe the power saving states that are supported by the TSF, how these states are applied, how to configure when these states are applied (if applicable), and how to enable/disable the use of specific power saving states (if applicable).

KMD There are no KMD evaluation activities for this SFR.

Test Option A and B: The evaluator shall verify that the TOE has the functionality to forward a command to the EE to change and cryptographically erase the DEK. The actual testing of the cryptographic erase will take place in the EE.

Option C: The evaluator shall initialize the TOE such that it requires the user to input an authorization factor in order to access encrypted data.

Test 1: The evaluator shall first provision user authorization factors, and then verify all authorization values supported allow the user access to the encrypted data. Then the evaluator shall exercise the management functions to change a user's authorization factor values to a new one. Then he or she will verify that the TOE denies access to the user's encrypted data when he or she uses the old or original authorization factor values to gain access.

Option D: The evaluator shall verify that the TOE has the functionality to initiate TOE firmware/software updates.

Option E: If additional management functions are claimed, the evaluator shall verify that the additional features function as described.

Test 2: [conditional] If the TOE provides default authorization factors, the evaluator shall change these factors in the course of taking ownership of the device as described in the operational guidance. The evaluator shall then confirm that the (old) authorization factors are no longer valid for data access.

Test 3 [conditional] If the TOE provides key recovery capability whose effects are visible at the TOE interface, then the evaluator shall devise a test that ensures that the key recovery capability has been or can be disabled following the guidance provided by the vendor.

Test 4 [conditional] If the TOE provides the ability to configure the power saving states that are entered by certain events, the evaluator shall devise a test that causes the TOE to enter a specific power saving state, configure the TSF so that this activity causes a different state to be entered, repeat the activity, and observe the new state is entered as configured.

Test 5 [conditional] If the TOE provides the ability to disable the use of one or more power saving states, the evaluator shall devise a test that enables all supported power saving states and demonstrates that the TOE can enter into each of these states. The evaluator shall then disable the supported power saving states one by one, repeating the same set of actions that were performed at the start of the test, and observe each time that when a power saving state is configured to no longer be used, none of the behavior causes the disabled state to be entered.

September 2015 Version 2.0 Page 24 of 43

1 2.3 FPT: Protection of the TSF

2 2.3.1 FPT_KYP_EXT.1 Protection of Key and Key Material

Evaluat	Evaluation Activity	
TSS	The evaluator shall examine the TSS to verify that it describes the method by which	
	intermediate keys are generated using submask combining.	
AGD	There are no AGD evaluation activities for this SFR.	
KMD	The evaluator shall examine the KMD for a description of the methods used to protect	
	keys stored in non-volatile memory.	
	The evaluator shall verify the KMD to ensure it describes the storage location of all keys	
	and the protection of all keys stored in non-volatile memory. The description of the key	
	chain shall be reviewed to ensure the selected method is followed for the storage of	
	wrapped or encrypted keys in non-volatile memory and plaintext keys in non-volatile	
	memory meet one of the criteria for storage.	
Test	There are no test evaluation activities for this SFR.	

3 2.3.2 FPT_PWR_EXT.1 Power Saving States

Evalua	Evaluation Activity	
TSS	The evaluator shall validate the TSS contains a list of Compliant power saving states.	
AGD	The evaluator shall ensure that guidance documentation contains a list of Compliant power saving states. If additional power saving states are supported, then the evaluator shall validate that the guidance documentation states how non-Compliant power states are disabled.	
KMD	There are no KMD evaluation activities for this SFR.	
Test	The evaluator shall confirm that for each listed Compliant state all key/key materials are removed from volatile memory by using the test defined in FCS_CKM.4(2).	

4 2.3.3 FPT_PWR_EXT.2 Timing of Power Saving States

Evaluat	Evaluation Activity	
TSS	The evaluator shall validate that the TSS contains a list of conditions under which the TOE	
	enters a Compliant power saving state.	
AGD	The evaluator shall check that the guidance contains a list of conditions under which the	
	TOE enters a Compliant power saving state. Additionally, the evaluator shall verify that	
	the guidance documentation states whether unexpected power-loss events may result in	
	entry to a non-Compliant power saving state and, if that is the case, validate that the	
	documentation contains information on mitigation measures.	
KMD	There are no KMD evaluation activities for this SFR.	
Test	The evaluator shall trigger each condition in the list of identified conditions and ensure	
	the TOE ends up in a Complaint power saving state by running the test identified in	
	FCS_CKM.4(2).	

5 2.3.4 FPT_TST_EXT.1 TSF Testing

Evalua	tion Activity
TSS	The evaluator shall verify that the TSS describes the known-answer self-tests for cryptographic functions.
	The evaluator shall verify that the TSS describes, for some set of non-cryptographic functions affecting the correct operation of the TOE and the method by which the TOE

Englishie	and Antimitia
t 1	tests those functions. The evaluator shall verify that the TSS includes each of these functions, the method by which the TOE verifies the correct operation of the function. The evaluator shall verify that the TSF data are appropriate for TSF Testing. For example, more than blocks are tested for AES in CBC mode, output of AES in GCM mode is tested without truncation, or 512-bit key is used for testing HMAC-SHA-512.
	If FCS_RBG_EXT.1 is implemented by the TOE and according to NIST SP 800-90, the evaluator shall verify that the TSS describes health tests that are consistent with section 11.3 of NIST SP 800-90.
	If any FCS_COP functions are implemented by the TOE, the TSS shall describe the known-answer self-tests for those functions.
1 3	The evaluator shall verify that the TSS describes, for some set of non-cryptographic functions affecting the correct operation of the TSF, the method by which those functions are tested. The TSS will describe, for each of these functions, the method by which correct operation of the function/component is verified. The evaluator shall determine that all of the identified functions/components are adequately tested on start-up.
	There are no AGD evaluation activities for this SFR.
KMD [There are no KMD evaluation activities for this SFR.

1 2.3.5 FPT_TUD_EXT.1 Trusted Update

Test

There are no test evaluation activities for this SFR.

Evalua	tion Activity
TSS	The evaluator shall examine the TSS to ensure that it describes information stating that an authorized source signs TOE updates and will have an associated digital signature. The evaluator shall examine the TSS contains a definition of an authorized source along with a description of how the TOE uses public keys for the update verification mechanism in the Operational Environment. The evaluator ensures the TSS contains details on the protection and maintenance of the TOE update credentials.
	If the Operational Environment performs the signature verification, then the evaluator shall examine the TSS to ensure it describes, for each platform identified in the ST, the interface(s) used by the TOE to invoke this cryptographic functionality.
AGD	The evaluator ensures that the operational guidance describes how the TOE obtains vendor updates to the TOE; the processing associated with verifying the digital signature of the updates (as defined in FCS_COP.1(a)); and the actions that take place for successful and unsuccessful cases.
KMD	There are no KMD evaluation activities for this SFR.
Test	The evaluators shall perform the following tests (if the TOE supports multiple signatures, each using a different hash algorithm, then the evaluator performs tests for different combinations of authentic and unauthentic digital signatures and hashes, as well as for digital signature alone):
	Test 1: The evaluator performs the version verification activity to determine the current version of the TOE. After the update tests described in the following tests, the evaluator performs this activity again to verify that the version correctly corresponds to that of the update.
	Test 2: The evaluator obtains a legitimate update using procedures described in the operational guidance and verifies that an update successfully installs on the TOE.

Evaluat	tion A	ctivity										
	The	evaluator	shall	perform	a	subset	of	other	evaluation	activity	tests	to
	dem	onstrate tha	at the u	ıpdate fun	cti	ons as e	xpe	cted.				

September 2015 Version 2.0 Page 27 of 43

3 Evaluation Activities for SARs

- 2 The sections below specify Evaluation Activities for the Security Assurance Requirements
- 3 included in the related cPPs (see section 1.1 above). The Evaluation Activities are an
- 4 interpretation of the more general CEM assurance requirements as they apply to the specific
- 5 technology area of the TOE.

1

15

- 6 In cases where the requirements are not technology dependent, the evaluator is expected to
- 7 perform the CEM work units (e.g., ASE, ALC CMC.1, ALC CMS.1), those activities are
- 8 not repeated here, rather they are expressed as part of the cPP.

9 3.1 ASE: Security Target Evaluation

- 10 An evaluation activity is defined here for evaluation of Exact Conformance claims against a
- 11 cPP in a Security Target. Other aspects of ASE remain as defined in the CEM.

12 3.1.1 Conformance Claims (ASE_CCL.1)

- 13 The table below indicates the actions to be taken for particular ASE_CCL.1 elements in order
- 14 to determine exact conformance with a cPP.

ASE_CCL.1 element	Evaluator Action
ASE_CCL.1.8C	The evaluator shall check that the statements of security
	problem definition in the PP and ST are identical.
ASE_CCL.1.9C	The evaluator shall check that the statements of security
	objectives in the PP and ST are identical.
ASE_CCL.1.10C	The evaluator shall check that the statements of security
	requirements in the ST include all the mandatory SFRs in
	the cPP, and all of the selection-based SFRs that are
	entailed by selections made in other SFRs (including any
	SFR iterations added in the ST). The evaluator shall check
	that if any other SFRs are present in the ST (apart from
	iterations of SFRs in the cPP) then these are taken only
	from the list of optional SFRs specified in the cPP (the cPP
	will not <i>necessarily</i> include optional SFRs, but may do so).
	If optional SFRs from the cPP are included in the ST then
	the evaluator shall check that any selection-based SFRs
	entailed by the optional SFRs adopted are also included in
	the ST.

3.2 ADV: Development

16 3.2.1 Basic Functional Specification (ADV_FSP.1)

- 17 The Evaluation Activities for this assurance component focus on understanding the interfaces
- 18 presented in the TOE Summary Specification (TSS) in response to the functional
- 19 requirements, and on the interfaces presented in the AGD documentation. Technology
- 20 specific requirements on this documentation are identified (where relevant) for each SFR in
- section 2 above, and in Evaluation Activities for AGD, ATE, and AVA SARs in other parts
- of section 3 in this Supporting Document. In addition there is an Evaluation Activity the
- evaluator performs to satisfy this SAR component as follows:

- 1 Evaluation Activity:
- 2 The evaluator shall check the interface documentation to ensure it describes the purpose and
- 3 method of use for each TSFI that is identified as being security relevant.
- 4 In this context, TSFI are deemed security relevant if they are used by the administrator to
- 5 configure the TOE, or to perform other administrative functions (e.g., perform updates).
- 6 Additionally, those interfaces that are identified in the ST, or guidance documentation, as
- 7 adhering to the security policies (as presented in the SFRs), are also considered security
- 8 relevant. The intent, is that these interfaces will be adequately tested, and having an
- 9 understanding of how these interfaces are used in the TOE is necessary to ensure proper test
- 10 coverage is applied.
- 11 Evaluation Activity:
- 12 The evaluator shall check the interface documentation to ensure it identifies and describes the
- parameters for each TSFI that is identified as being security relevant.
- 14 The documents to be examined for this assurance component in an evaluation are therefore
- 15 the Security Target, AGD documentation, and any supplementary information required by
- the cPP for aspects such as entropy analysis or cryptographic key management architecture¹:
- 17 no additional "functional specification" documentation is necessary to satisfy the Evaluation
- 18 Activities. The interfaces that need to be evaluated are also identified by reference to the
- assurance activities listed for each SFR, and are expected to be identified in the context of the
- 20 Security Target, AGD documentation, and any supplementary information required by the
- 21 cPP rather than as a separate list specifically for the purposes of CC evaluation. The direct
- 22 identification of documentation requirements and their assessment as part of the Evaluation
- 23 Activities for each SFR also means that the tracing required in ADV FSP.1.2D is treated as
- 24 implicit, and no separate mapping information is required for this element.
- 25 However, if the evaluator is unable to perform some other required Evaluation Activity
- because there is insufficient design and interface information, then the evaluator is entitled to
- 27 conclude that an adequate functional specification has not been provided, and hence that the
- verdict for the ADV FSP.1 assurance component is a 'fail'.

3.3 AGD: Guidance Documents

- 30 It is not necessary for a TOE to provide separate documentation to meet the individual
- 31 requirements of AGD_OPE and AGD_PRE. Although the Evaluation Activities in this
- 32 section are described under the traditionally separate AGD families, the mapping between
- real TOE documents and AGD OPE and AGD PRE requirements may be many-to-many, as
- 34 long as all requirements are met in documentation that is delivered to administrators and users
- 35 (as appropriate) as part of the TOE.

_

29

September 2015 Version 2.0 Page 29 of 43

¹ The Security Target and AGD documentation are public documents. Supplementary information may be public or proprietary: the cPP and/or Evaluation Activity descriptions will identify where such supplementary documentation is permitted to be proprietary and non-public.

1 3.3.1 Operational User Guidance (AGD_OPE.1)

- 2 Specific requirements and checks on the user guidance documentation are identified (where
- 3 relevant) in the individual Evaluation Activities for each SFR, and for some other SARs (e.g.
- 4 ALC_CMC.1).
- 5 Evaluation Activity:
- 6 The evaluator shall check the requirements below are met by the operational guidance.
- 7 Operational guidance documentation shall be distributed to administrators and users (as
- 8 appropriate) as part of the TOE, so that there is a reasonable guarantee that administrators and
- 9 users are aware of the existence and role of the documentation in establishing and maintaining
- 10 the evaluated configuration.
- 11 Operational guidance must be provided for every Operational Environment that the TOE
- supports as claimed in the Security Target and must adequately address all platforms claimed
- for the TOE in the Security Target. This may be contained all in one document.
- 14 The contents of the operational guidance will be verified by the Evaluation Activities defined
- below and as appropriate for each individual SFR in section 2 above.
- In addition to SFR-related Evaluation Activities, the following information is also required.
- The operational guidance shall contain instructions for configuring any cryptographic engine associated with the evaluated configuration of the TOE. It shall provide a warning to the administrator that use of other cryptographic engines was not evaluated nor tested during the CC evaluation of the TOE.
- 22 b) The TOE will likely contain security functionality that does not fall under the scope of evaluation under this cPP. The operational guidance shall make it clear to an administrator which security functionality is covered by the Evaluation Activities.

26 **3.3.2** Preparative Procedures (AGD_PRE.1)

- 27 As for the operational guidance, specific requirements and checks on the preparative
- 28 procedures are identified (where relevant) in the individual Evaluation Activities for each
- 29 SFR.
- 30 Evaluation Activity:
- 31 The evaluator shall check the requirements below are met by the preparative procedures.
- 32 The contents of the preparative procedures will be verified by the Evaluation Activities
- defined below and as appropriate for each individual SFR in section 2 above.
- 34 Preparative procedures shall be distributed to administrators and users (as appropriate) as part
- of the TOE, so that there is a reasonable guarantee that administrators and users are aware of
- 36 the existence and role of the documentation in establishing and maintaining the evaluated
- 37 configuration.

- 1 The contents of the preparative procedures will be verified by the Evaluation Activities
- 2 defined below and as appropriate for each individual SFR in section 2 above.
- 3 In addition to SFR-related Evaluation Activities, the following information is also required.
- 4 Preparative procedures must include a description of how the administrator verifies that the
- 5 operational environment can fulfil its role to support the security functionality (including the
- 6 requirements of the Security Objectives for the Operational Environment specified in the
- 7 Security Target). The documentation should be in an informal style and should be written
- 8 with sufficient detail and explanation that they can be understood and used by the target
- 9 audience (which will typically include IT staff who have general IT experience but not
- 10 necessarily experience with the TOE itself).
- 11 Preparative procedures must be provided for every Operational Environment that the TOE
- supports as claimed in the Security Target and must adequately address all platforms claimed
- for the TOE in the Security Target. This may be contained all in one document.
- 14 The preparative procedures must include
- a) instructions to successfully install the TSF in each Operational Environment; and
- b) instructions to manage the security of the TSF as a product and as a component of the larger operational environment; and
- 19 c) instructions to provide a protected administrative capability.
- 20 **3.4** ATE: Tests
- 21 3.4.1 Independent Testing Conformance (ATE_IND.1)
- 22 Testing is performed to confirm the functionality described in the TSS as well as the
- 23 operational guidance documentation. The focus of the testing is to confirm that the
- 24 requirements specified in the SFRs are being met.
- 25 The evaluator should consult Appendix B FDE Equivalency Considerations when
- 26 determining the appropriate strategy for testing multiple variations or models of the TOE that
- 27 may be under evaluation.
- 28 The SFR-related Evaluation Activities in the SD identify the specific testing activities
- 29 necessary to verify compliance with the SFRs. The tests identified in these other Evaluation
- Activities constitute a sufficient set of tests for the purposes of meeting ATE_IND.1.2E. It
- 31 is important to note that while the Evaluation Activities identify the testing that is necessary
- 32 to be performed, the evaluator is responsible for ensuring that the interfaces are adequately
- tested for the security functionality specified for each SFR.
- 34 Evaluation Activity:
- 35 The evaluator shall examine the TOE to determine that the test configuration is consistent with
- 36 the configuration under evaluation as specified in the ST.
- 37 Evaluation Activity:

- 1 The evaluator shall examine the TOE to determine that it has been installed properly and is in a
- 2 known state.
- 3 Evaluation Activity:
- 4 The evaluator shall prepare a test plan that covers all of the testing actions for ATE_IND.1 in
- 5 the CEM and in the SFR-related Evaluation Activities. While it is not necessary to have one
- 6 test case per test listed in an Evaluation Activity, the evaluator must show in the test plan that
- 7 each applicable testing requirement in the SFR-related Evaluation Activities is covered.
- 8 The test plan identifies the operational environment to be tested, and for any platforms not
- 9 included in the test plan but included in the ST, the test plan provides a justification for not
- 10 testing the platforms. This justification must address the differences between the tested
- platforms and the untested platforms, and make an argument that the differences do not affect
- 12 the testing to be performed. It is not sufficient to merely assert that the differences have no
- affect; rationale must be provided. If all platforms claimed in the ST are tested, then no
- 14 rationale is necessary.
- 15 The test plan describes the composition and configuration of each operational environment to
- be tested, and any setup actions that are necessary beyond what is contained in the AGD
- 17 documentation. It should be noted that the evaluator is expected to follow the AGD
- documentation for installation and setup of each platform either as part of a test or as a
- standard pre-test condition. This may include special test drivers or tools. For each driver or
- 20 tool, an argument (not just an assertion) should be provided that the driver or tool will not
- 21 adversely affect the performance of the functionality by the TOE and its platform. This also
- 22 includes the configuration of any cryptographic engine to be used (e.g. for cryptographic
- protocols being evaluated).
- 24 The test plan identifies high-level test objectives as well as the test procedures to be followed
- 25 to achieve those objectives, and the expected results.
- 26 The test report (which could just be an updated version of the test plan) details the activities
- 27 that took place when the test procedures were executed, and includes the actual results of the
- 28 tests. This shall be a cumulative account, so if there was a test run that resulted in a failure,
- so that a fix was then installed and then a successful re-run of the test was carried out, then
- 30 the report would show a "fail" result followed by a "pass" result (and the supporting details),
- and not just the "pass" result².

32 **3.5 AVA: Vulnerability Assessment**

33 **3.5.1** Vulnerability Survey (AVA_VAN.1)

34 1 <To be supplied with the next revision>

September 2015 Version 2.0 Page 32 of 43

² It is not necessary to capture failures that were due to errors on the part of the tester or test environment. The intention here is to make absolutely clear when a planned test resulted in a change being required to the originally specified test configuration in the test plan, to the evaluated configuration identified in the ST and operational guidance, or to the TOE itself.

1 4 Required Supplementary Information

- 2 This Supporting Document refers in various places to the possibility that 'supplementary
- 3 information' may need to be supplied as part of the deliverables for an evaluation. This term
- 4 is intended to describe information that is not necessarily included in the Security Target or
- 5 operational guidance, and that may not necessarily be public. Examples of such information
- 6 could be entropy analysis, or description of a cryptographic key management architecture
- 7 used in (or in support of) the TOE. The requirement for any such supplementary information
- 8 will be identified in the relevant cPP.
- 9 The FDE cPP for the Authorization Acquisition requires an entropy analysis, and key
- management description. The EAs the evaluator is to perform with those documents are
- captured under the appropriate SFRs in section 2.

September 2015 Version 2.0 Page 33 of 43

5 References

2	[CC1]	Common Criteria for Information Technology Security
3		Evaluation, Part 1: Introduction and General Model
4		CCMB-2012-09-001, Version 3.1 Revision 4,
5		September 2012

September 2015 Version 2.0 Page 34 of 43

Appendix A Vulnerability Analysis

Evaluation Activity:

1 <To Be Supplied>

September 2015 Version 2.0 Page 35 of 43

Appendix B FDE Equivalency Considerations

Introduction

This appendix provides a foundation for evaluators to determine whether a vendor's request for equivalency of products for different OSs/platforms wishing to claim conformance to the FDE collaborative Protection Profiles.

For the purpose of this evaluation, equivalency can be broken into two categories:

- Variations in models: Separate TOE models/variations may include differences that
 could necessitate separate testing across each model. If there are no variations in any
 of the categories listed below, the models may be considered equivalent.
- Variations in OS/platform the product is tested (e.g., the testing environment): The method a TOE provides functionality (or the functionality itself) may vary depending upon the OS on which it is installed. If there are no difference in the TOE provided functionality or in the manner in which the TOE provides the functionality, the models may be considered equivalent.

Determination of equivalency between for each of the above specified categories can result in several different testing outcomes.

If a set of TOE are determined to be equivalent, testing may be performed on a single variation of the TOE. However, if the TOE variations have security relevant functional differences, each of the TOE models that exhibits either functional or structural differences must be separately tested. Generally speaking, only the difference between each variation of TOE must be separately tested. Other equivalent functionality, may be tested on a representative model and not across multiple platforms.

If it is determined that a TOE operates the same regardless of the platform/OS it is installed within, testing may be performed on a single OS/platform combination for all equivalent configurations. However, if the TOE is determined to provide environment specific functionality, testing must take place in each environment for which a difference in functionality exists. Similar to the above scenario, only the functionality affected by environment differences must be retested

If a vendor disagrees with the evaluator's assessment of equivalency, the validator arbitrates between the two parties whether equivalency exists.

Evaluator guidance for determining equivalence

The following table provides a description of how an evaluator should consider each of the factors that affect equivalency between TOE model variations and across operating environments. Additionally, the table also identifies scenarios that will result in additional separate testing across models/platforms.

September 2015 Version 2.0 Page 36 of 43

Factor	Same/Not Same	Evaluator guidance
Platform/Hardware Dependencies	Independent	If there are no identified platform/hardware dependencies, the evaluator shall consider testing on multiple hardware platforms to be equivalent.
	Dependencies	If there are specified differences between platforms/hardware, the evaluator must identify if the differences affect the cPP specified security functionality or if they apply to non-PP specified functionality. If functionality specified in the cPP is dependent upon platform/hardware provided services, the TOE must be tested on each of the different platform to be considered validated on that particular hardware combination. In these cases, the evaluator has the option of only re-testing the functionality dependent upon the platform/hardware provided functionality. If the differences only affect non-PP specified functionality, the variations may still be considered equivalent. For each difference the evaluator must provide an explanation of why the difference does or does not affect cPP specified functionality.
Software/OS Dependencies	Independent	If there are no identified software/OS dependencies, the evaluator shall consider testing on multiple OSs to be equivalent.
	Dependencies	If there are specified differences between OSs, the evaluator must identify if the differences affect the cPP specified security functionality or if they apply to non-PP specified functionality. If functionality specified in the cPP is dependent upon OS provided services, the TOE must be tested on each of the different OSs. In these cases, the evaluator has the option of only re-testing the functionality dependent upon the OS provided functionality. If the differences only affect non-PP specified functionality, the model variations may still be considered equivalent. For each difference the evaluator must provide an explanation of why the difference does or does not affect cPP specified functionality.
Differences in TOE Software Binaries	Identical	If the model binaries are identical, the model variations shall be considered equivalent.
	Different	If there are differences between model software binaries, a determination must be made if the differences affect cPP-specified security

Factor	Same/Not Same	Evaluator guidance
		functionality. If cPP-specified functionality is affected, the models are not considered equivalent and must be tested separately. The evaluator has the option of only retesting the functionality that was affected by the software differences. If the differences only affect non-PP specified functionality, the models may still be considered equivalent. For each difference the evaluator must provide an explanation of why the difference does or does not affect cPP specified functionality.
Different in Libraries Used to Provide TOE	Same	If there are no differences between the libraries used in various TOE models, the model variations shall be considered equivalent.
Functionality	Different	If the separate libraries are used between model variations, a determination if the functionality provided by the library affects cPP-specified functionality must be made. If cPP-specified functionality is affected, the models are not considered equivalent and must be tested separately. The evaluator has the option of only retesting the functionality that was affected by the differences in the included libraries. If the different libraries only affect non-PP specified functionality, the models may still be considered equivalent. For each different library, the evaluator must provide an explanation of why the different libraries do or do not affect cPP specified functionality.
TOE Management Interface Differences	Consistent	If there are no differences in the management interfaces between various TOE models, the models variations shall be considered equivalent.
	Differences	If the TOE provides separate interfaces based on either the OS it is installed on or the model variation, a determination must be made if cPP-specified functionality can be configured by the different interfaces. If the interface differences affect cPP-specified functionality, the variations/OS installations are not considered equivalent and must be separately tested. The evaluator has the option of only retesting the functionality that can be configured by the different interfaces (and the configuration of said functionality). If the different management interfaces only affect non-PP specified functionality, the models may still be considered equivalent. For each management interface

Factor	Same/Not Same	Evaluator guidance
		difference, the evaluator must provide an explanation of why the different management interfaces do or do not affect cPP specified functionality.
TOE Functional Differences	Identical	If the functionality provided by different TOE model variation is identical, the models variations shall be considered equivalent.
	Different	If the functionality provided by different TOE model variations differ, a determination must be made if the functional differences affect cPP-specified functionality. If cPP-specific functionality differs between models, the models are not considered equivalent and must be tested separately. In these cases, the evaluator has the option of only retesting the functionality that differs model-to-model. If the functional differences only affect non-cPP specified functionality, the model variations may still be considered equivalent. For each difference the evaluator must provide an explanation of why the difference does or does not affect cPP specified functionality.

Table 1 - Evaluation Equivalency Analysis

Strategy

When performing the equivalency analysis, the evaluator should consider each factor independently. Each analysis of an individual factor will result in one of two outcomes,

- For the particular factor, all variations of the TOE on all supported platforms are equivalent. In this case, testing may be performed on a single model in a single test environment and cover all supported models and environments.
- For the particular factor, a subset of the TOE has been identified to require separate testing to ensure that it operates identically to all other equivalent TOE. The analysis would identify the specific combinations of models/testing environments that needed to be tested.

Complete CC testing of the TOE would encompass the totality of each individual analysis performed for each of the identified factors.

Test presentation/Truth in advertising

In addition to determining what to test, the evaluation results and resulting validation report, must identify the actual module and testing environment combinations that have been tested.

September 2015 Version 2.0 Page 39 of 43

The analysis used to determine the testing subset may be considered proprietary and will only optionally be publically included.

Appendix C: Glossary

Term	Meaning
Authorization Factor	A value that a user knows, has, or is (e.g. password, token, etc) submitted to the TOE to establish that the user is in the community authorized to use the hard disk and that is used in the derivation or decryption of the BEV and eventual decryption of the DEK. Note that these values may or may not be used to establish the particular identity of the user.
Assurance	Grounds for confidence that a TOE meets the SFRs [CC1].
Border Encryption Value	A value passed from the AA to the EE intended to link the key chains of the two components.
Key Sanitization	A method of sanitizing encrypted data by securely overwriting the key that was encrypting the data.
Data Encryption Key (DEK)	A key used to encrypt data-at-rest.
Full Drive Encryption	Refers to partitions of logical blocks of user accessible data as managed by the host system that indexes and partitions and an operating system that maps authorization to read or write data to blocks in these partitions. For the sake of this Security Program Definition (SPD) and cPP, FDE performs encryption and authorization on one partition, so defined and supported by the OS and file system jointly, under consideration. FDE products encrypt all data (with certain exceptions) on the partition of the storage device and permits access to the data only after successful authorization to the FDE solution. The exceptions include the necessity to leave a portion of the storage device (the size may vary based on implementation) unencrypted for such things as the Master Boot Record (MBR) or other AA/EE preauthentication software. These FDE cPPs interpret the term "full drive encryption" to allow FDE solutions to leave a portion of the storage device unencrypted so long as it contains no protected data.
Intermediate Key	A key used in a point between the initial user authorization and the DEK.
Host Platform	The local hardware and software the TOE is running on, this does not include any peripheral devices (e.g. USB devices) that may be connected to the local hardware and software.
Key Chaining	The method of using multiple layers of encryption keys to protect data. A top layer key encrypts a lower layer key which encrypts the data; this method can have any number of layers.
Key Encryption Key (KEK)	A key used to encrypt other keys, such as DEKs or storage that contains keys.
Key Material	Key material is commonly known as critical security parameter (CSP) data, and also includes authorization data, nonces, and metadata.
Key Release Key (KRK)	A key used to release another key from storage, it is not used for the direct derivation or decryption of another key.
Operating System (OS)	Software which runs at the highest privilege level and can directly control hardware resources.
Non-Volatile Memory	A type of computer memory that will retain information without power.

September 2015 Version 2.0 Page 41 of 43

Term	Meaning
Powered-Off State	The device has been shutdown.
Protected Data	This refers to all data on the storage device with the exception of a small portion required for the TOE to function correctly. It is all space on the disk a user could write data to and includes the operating system, applications, and user data. Protected data does not include the Master Boot Record or Pre-authentication area of the drive – areas of the drive that are necessarily unencrypted.
Submask	A submask is a bit string that can be generated and stored in a number of ways.
Target of Evaluation	A set of software, firmware and/or hardware possibly accompanied by guidance. [CC1]

See [CC1] for other Common Criteria abbreviations and terminology.

September 2015 Version 2.0 Page 42 of 43

Appendix D:Acronyms

Acronym	Meaning
AA	Authorization Acquisition
AES	Advanced Encryption Standard
BEV	Border Encryption Value
BIOS	Basic Input Output System
CBC	Cipher Block Chaining
CC	Common Criteria
CCM	Counter with CBC-Message Authentication Code
CEM	Common Evaluation Methodology
CPP	Collaborative Protection Profile
DEK	Data Encryption Key
DRBG	Deterministic Random Bit Generator
DSS	Digital Signature Standard
ECC	Elliptic Curve Cryptography
ECDSA	Elliptic Curve Digital Signature Algorithm
EE	Encryption Engine
EEPROM	Electrically Erasable Programmable Read-Only Memory
FIPS	Federal Information Processing Standards
FDE	Full Drive Encryption
FFC	Finite Field Cryptography
GCM	Galois Counter Mode
HMAC	Keyed-Hash Message Authentication Code
IEEE	Institute of Electrical and Electronics Engineers
IT	Information Technology
ITSEF	IT Security Evaluation Facility
ISO/IEC	International Organization for Standardization / International Electrotechnical
ISO/IEC	Commission
IV	Initialization Vector
KEK	Key Encryption Key
KMD	Key Management Description
KRK	Key Release Key
MBR	Master Boot Record
NIST	National Institute of Standards and Technology
OS	Operating System
RBG	Random Bit Generator
RNG	Random Number Generator
RSA	Rivest Shamir Adleman Algorithm
SAR	Security Assurance Requirement
SED	Self Encrypting Drive
SHA	Secure Hash Algorithm
SFR	Security Functional Requirement
SPD	Security Problem Definition
SPI	Serial Peripheral Interface
ST	Security Target
TOE	Target of Evaluation
TPM	
TSF	Trusted Platform Module
	Trusted Platform Module TOE Security Functionality
TSS	
USB	TOE Security Functionality
	TOE Security Functionality TOE Summary Specification